Statistical Energy Analysis
 A.Le Bot

Tribology and system dynamics laboratory CNRS - Ecole centrale de Lyon, FRANCE

Contents:
1 Introduction
2 Modal density
3 Damping
4 Randon functions

5 Modal approach of statistical energy analysis
6 Coupling loss factors
7 Energy balance
8 Injected power
9 Entropy in statistical energy analysis

Reference: Foundation of statistical energy analysis in vibroacoustics, A. Le Bot, Oxford University Press, may 2015.
/ (CCLyA Up2HF, summer school, Celya, 1-3 july 2015

Introduction

When the frequency increases,

Huge number of dof

Frequency limitation of FEM

The modal density increases (!)

$$
n=\frac{\Delta N}{\Delta \omega}
$$

Inefficiency of modal analysis

High sensitivity to data
Poor predictibility

Frequency limits by FEM

automobile	$<1000 \mathrm{~Hz}$
aircraft	$<100 \mathrm{~Hz}$
ship	$<10 \mathrm{~Hz}$
Launcher, building	$<1 \mathrm{~Hz}$

Statistical energy analysis is a statistical theory of sound and vibration when the number of modes is large and vibration is sufficiently disorganized.

laminar flow

turbulent flow

modes <-> molecules
diffuse field <-> thermal equilibrium

Modal density

Each finite structure (or bounded room) has a sequence of natural frequencies which tends to infinite.

$$
\text { Ex. string: } \quad \omega_{i}=i \frac{\pi}{L} \quad \text { and } \quad \psi_{i}(x)=\sin \left(i \pi \frac{x}{L}\right) \quad \text { for } i=1,2, \ldots
$$

Dimension 1
Resonance $=$ integer number of half-wavelengths

wavenumber $\stackrel{\text { wavenumber }}{>} \frac{\kappa}{\pi} L=N$ length $V^{\text {Imodes }}$

$$
\text { dispersion relationship } \kappa(\omega)
$$

modal density $\quad n(\omega)=\frac{d N}{d \omega}=\frac{L}{\pi} \frac{d \kappa}{d \omega}$
group speed $\quad c_{g}=\frac{d \omega}{d \kappa}$

Dimension 2

Resonance = integer number of half-wavelengths in each direction
wavenumber vector

$$
\kappa=\left(\kappa_{x}, \kappa_{y}\right)
$$

number of modes below ω :

$$
N(\omega)=\operatorname{Card}\left\{(p, q) \in \mathbb{N}^{2},\left(\frac{p \pi}{a}\right)^{2}+\left(\frac{q \pi}{b}\right)^{2} \leq \kappa^{2}(\omega)\right\}
$$

$N(\omega)$ is approximated by the area under the ellipse $1=\left(\frac{p \pi}{a}\right)^{2}+\left(\frac{q \pi}{b}\right)^{2}$

modal density $n(\omega)=\frac{d N}{d \omega}=\frac{a b}{2 \pi} \kappa \frac{d \kappa}{d \omega}$
group speed $\quad c_{g}=\frac{d \omega}{d \kappa} \quad$ phase speed $\left.\quad c_{p}=\frac{\omega}{\kappa} \quad\right]$

Dimension 3

Resonance $=$ integer number of half-wavelengths in each direction
wavenumber vector

$$
\kappa=\left(\kappa_{x}, \kappa_{y}, \kappa_{z}\right)
$$

integer $(p, q, r) \in \mathbb{N}^{3}$
number of modes below ω :

$$
N(\omega)=\operatorname{Card}\left\{(p, q, r) \in \mathbb{N}^{3},\left(\frac{p \pi}{a}\right)^{2}+\left(\frac{q \pi}{b}\right)^{2}+\left(\frac{r \pi}{c}\right)^{2} \leq \kappa^{2}(\omega)\right\}
$$

$N(\omega)$ is the volume enclosed by the ellipsoid surface $1=\left(\frac{p \pi}{a}\right)^{2}+\left(\frac{q \pi}{b}\right)^{2}+\left(\frac{r \pi}{c}\right)^{2}$

$$
N(\omega)=\frac{1}{8} \times \frac{4}{3} \pi \frac{a \kappa}{\pi} \frac{b \kappa}{\pi} \frac{c \kappa}{\pi}=\frac{a b c \kappa^{3}}{6 \pi^{2}}
$$

modal density $n(\omega)=\frac{d N}{d \omega}=\frac{a b c}{2 \pi^{2}} \kappa^{2} \frac{d \kappa}{d \omega}$
group speed $c_{g}=\frac{d \omega}{d \kappa}$
phase speed $\quad c_{p}=\frac{\omega}{\kappa}$ ل

3D modal density surface

Damping

At high frequencies, the vibrational level is controlled by damping

- viscous damping coefficient c
- modal damping ratio ζ
- damping loss factor η
- half-power bandwidth Δ

$$
\begin{array}{ll}
\omega_{0}=\sqrt{\frac{k}{m}} & \zeta=\frac{c}{2 m \omega_{0}} \\
\eta=2 \zeta & \Delta=\eta \omega_{0}
\end{array}
$$

Half-power bandwidth

half-power bandwidth Δ
damping loss factor $\eta=\frac{\Delta}{\omega_{0}}$
This a low frequency method

Reverberation time

$\mathrm{Tr}=$ Time for a decrease of 60 dB of vibrational level (or SPL)
Time decrease of energy $E(t)=E_{0} \exp (-\eta \omega t) \quad 10 \log _{10} E\left(T_{r}\right)-10 \log _{10} E_{0}=-60$

$$
\begin{aligned}
& \text { In structures } \\
& T_{r}=\frac{2.2 \times 2 \pi}{\eta \omega}
\end{aligned}
$$

In rooms
$T_{r}=0.16 \frac{\mathrm{~V}}{\alpha S}$ (Sabine's formula)

Power balance

Steady state condition $\quad P_{i n j}=\eta \omega E$
Measurement of $P_{i n j}$ with an impedance head This is a high frequency method
Measurement of E with accelerometers or vibrometer

Random functions

A random function is a map $t \mapsto x(t)$ where $x(t)$ is a random variable

<. > probabilitic expectation

Auto-correlation - power spectral density

$$
\begin{gathered}
\text { time time delay } \\
\langle x(t) \stackrel{1}{x}(t+\stackrel{\tau}{\downarrow})\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) \exp (i \omega t) d \omega \\
\text { Auto-correlation }
\end{gathered}
$$

At $\tau=0$

$$
\left\langle x^{2}\right\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) d \omega
$$

Stationarity

A random function is stationary if $\langle x(t)\rangle$ and $\langle x(t) x(t+\tau\rangle$ do not depend on t.

White noise

$$
\left\{\begin{array}{l}
S_{x x}(\omega)=S_{0} \\
\left\langle x(t) x(t+\tau\rangle=\frac{S_{0}}{2 \pi} \delta(t)\right.
\end{array}\right.
$$

Uncorrelation
$x(t)$ and $y(t)$ are said uncorrelated if $\langle x(t) y(t+\tau)\rangle=0$ or $S_{x y}(\omega)=0$

Response to a linear system

PSD of output

$$
S_{x x}(\omega)=|H|^{2}(\omega) S_{f f}(\omega) \quad S_{\dot{x} \dot{x}}(\omega)=\omega^{2}|H|^{2}(\omega) S_{f f}(\omega) \quad S_{f \dot{x}}(\omega)=i \omega H(\omega) S_{f f}(\omega)
$$

Modal approach of statistical energy analysis

The goal of statistical energy analysis is to provide an analysis of vibrating structures in terms of energy and power.
E_{i} : vibrational energy in subsystem i .
K_{i} : kinetic energy in subsystem i.
V_{i} : elastic energy in subsystem i.

$$
E_{i}=V_{i}+K_{i}
$$

 random forces

How is the vibrational energy shared between the elastic and kinetic forms?
$P_{i n j, i}$: power injected in subsystem i by external forces
$P_{\text {diss }, i}$: power dissipated in subsystem i.
How to compute the injected power from spectrum of forces?
Is the dissipated power related to vibrational energy?
$P_{i j} \quad:$ power exchanged between subsystem i and j .
Is there a relation between $P_{i j}$ and E_{i}, E_{j} ?

Single resonator

Governing equation

Assumptions

- linear mechanical oscillator
- stationary random force $f(t)$
- white noise force of spectrum S_{0}

$$
m \ddot{x}+c \dot{x}+k x=f(t)
$$

Frequency response function

$$
H(\omega)=\frac{1}{m \omega_{0}^{2}\left[1+2 i \frac{\omega}{\omega_{0}}-\frac{\omega^{2}}{\omega_{0}^{2}}\right]}
$$

Power balance

i) Equality of kinetic and elastic energies

$$
\begin{aligned}
& \langle V\rangle=\frac{1}{2} k\left\langle x^{2}\right\rangle=\frac{k}{4 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) d \omega=\frac{k S_{0}}{4 \pi} \int_{-\infty}^{\infty}|H|^{2}(\omega) d \omega=\frac{k S_{0}}{8 \zeta m^{2} \omega_{0}^{3}} \\
& \langle K\rangle=\frac{1}{2} m\left\langle\dot{x}^{2}\right\rangle=\frac{m}{4 \pi} \int_{-\infty}^{\infty} S_{\dot{x} \dot{x}}(\omega) d \omega=\frac{m S_{0}}{4 \pi} \int_{-\infty}^{\infty} \omega^{2}|H|^{2}(\omega) d \omega=\frac{m S_{0}}{8 \zeta m^{2} \omega_{0}}
\end{aligned}
$$

$$
\langle V\rangle=\langle K\rangle
$$

ii) Injected power

$$
\left\langle P_{i n j}\right\rangle=\langle f \dot{x}\rangle=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{f \dot{x}}(\omega) d \omega=\frac{S_{0}}{2 \pi} \int_{-\infty}^{\infty} i \omega H(\omega) d \omega=\frac{S_{0}}{2 m} \quad\left\langle P_{i n j}\right\rangle=\frac{S_{0}}{2 m}
$$

iii) Mean power balance
$\begin{array}{ll}\left\langle\frac{d E}{d t}\right\rangle=\langle m \dot{x} \ddot{x}\rangle+k\langle x \dot{x}\rangle=\frac{m}{2 \pi} \int_{-\infty}^{\infty} S_{\dot{x}(}(\omega) d \omega+\frac{k}{2 \pi} \int_{-\infty}^{\infty} S_{x x i}(\omega) d \omega=\frac{m S_{0}}{2 \pi} \int_{-\infty}^{\infty} i^{3}|H|^{2}(\omega) d \omega+\frac{k S_{0}}{2 \pi} \int_{-\infty}^{\infty} i \omega|H|^{2}(\omega) d \omega=0 \\ \left\langle P_{\text {diss }}\right\rangle=c\left\langle\dot{x}^{2}\right\rangle=\frac{2 c}{m} \times \frac{1}{2} m\left\langle\dot{x}^{2}\right\rangle=\frac{2 c}{m}\langle K\rangle=\frac{c}{m}\langle E\rangle & \text { odd function } \\ \left\langle P_{\text {diss }}\right\rangle=\frac{c}{m}\langle E\rangle\end{array}$
$\left\langle\frac{d E}{d t}\right\rangle+\left\langle P_{\text {diss }}\right\rangle=\left\langle P_{i n j}\right\rangle \quad\left\langle P_{i n j}\right\rangle=\frac{c}{m}\langle E\rangle$

Assumptions

- linear mechanical oscillators
- stationary random forces
- white noises force of spectrum
- uncorrelated forces
- conservative coupling (inertial, gyroscopic and elastic)

Governing equation

Frequency response matrix $\mathbf{H}(\omega)=\left[-\omega^{2} \mathbf{M}+i \omega \mathbf{C}+\mathbf{K}\right]^{-1}$
Power balance

$$
\frac{d}{d t}\left[\frac{1}{2} m_{i} \dot{x}_{i}^{2}+\frac{1}{2} k_{i} x_{i}^{2}-\frac{1}{2} K x_{1} x_{2}\right]+\underset{\text { dissinated oower }}{c_{i} \dot{x}_{i}^{2}}+\underset{\text { exastic enerav }}{2} K\left(x_{i} \dot{x}_{j}-\dot{x}_{i} x_{j}\right)=f_{i}=f_{i} \dot{x}_{i}
$$

The elastic energy of the coupling has been shared between adjacent oscillators
i) Equality of kinetic and elastic energies $\quad\left\langle V_{i}\right\rangle=\left\langle K_{i}\right\rangle$

It exists a unique way to share the coupling energy between oscillators to enforce the equality for each oscillator.
ii) Injected power

$$
\left\langle P_{i n j, i}\right\rangle=\frac{S_{i}}{2 m_{i}}
$$

The injected power does not depend on the presence of a coupling
iii) Mean power balance

Since each product $\left\langle x_{i}^{(p)} x_{j}^{(q)}\right\rangle$ is a linear combination of the power spectrums S_{i}
and $\left\langle P_{i j}\right\rangle=\left(\begin{array}{ll}A_{1} & A_{2}\end{array}\right)\binom{S_{1}}{S_{2}} \quad\left\langle P_{i j}\right\rangle=\left(\begin{array}{ll}A_{1} & A_{2}\end{array}\right)\left(\begin{array}{ll}E_{11} & E_{12} \\ E_{21} & E_{22}\end{array}\right)^{-1}\binom{\left\langle E_{1}\right\rangle}{\left\langle E_{2}\right\rangle}$
$\binom{\left\langle E_{1}\right\rangle}{\left\langle E_{2}\right\rangle}=\left(\begin{array}{ll}E_{11} & E_{12} \\ E_{21} & E_{22}\end{array}\right)\binom{S_{1}}{S_{2}}$
So, by expanding $\left\langle P_{12}\right\rangle=B_{1}\langle E\rangle-B_{2}\left\langle E_{2}\right\rangle$
After calculating all the integrals by the residue theorem

$$
\begin{aligned}
& \left\langle P_{12}\right\rangle=B\left(\langle E\rangle-\left\langle E_{2}\right\rangle\right) \\
& B=B_{1}=B_{2}=\frac{K^{2}\left(\Delta_{1}+\Delta_{2}\right)}{m_{1} m_{2}\left[\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+\left(\Delta_{1}+\Delta_{2}\right)\left(\Delta_{1} \omega_{2}^{2}+\Delta_{2} \omega_{1}^{2}\right)\right]}
\end{aligned}
$$

« blocked » natural frequency
$\omega_{i}=\sqrt{k_{i} / m_{i}}$
half-power bandwidth
$\Delta_{i}=c_{i} / m_{i}$

Set of resonators Newland 1966

Governing equation
$\mathbf{M X}+\mathbf{C X}+\mathbf{K X}=\mathbf{F}(t)$

Frequency response matrix
$\mathbf{H}(\omega)=\left[-\omega^{2} \mathbf{M}+i \omega \mathbf{C}+\mathbf{K}\right]^{-1}$

Assumptions

- white noise forces of spectrum S_{i} for $i=1, \ldots, n$
- uncorrelated forces
- conservative coupling
- light coupling

Perturbation technique $\quad \epsilon \propto K$

$$
\begin{aligned}
& \mathbf{K}=\left(\begin{array}{cc}
k_{1} & \mathrm{O} \\
\mathrm{O} & k_{n}
\end{array}\right)+\epsilon \underbrace{\left(\begin{array}{cc}
0 & \times \\
\times & 0
\end{array}\right)}_{\text {small parameter }} \\
& x_{i}(t)=x_{i 0}(t)+\epsilon \underbrace{}_{x_{i 1}(t)+\epsilon^{2} x_{i 2}(t)+o\left(\epsilon^{2}\right)}
\end{aligned}
$$

$$
\left\langle V_{i}\right\rangle=\left\langle K_{i}\right\rangle
$$

i) Equality of kinetic and elastic energies
ii) Injected power $\left\langle P_{i n j, i}\right\rangle=\frac{S_{i}}{2 m_{i}}$
iii) Mean power balance $\left\langle P_{12}\right\rangle=B\left(\left\langle E_{\rangle}-\left\langle E_{2}\right\rangle\right)+o\left(\epsilon^{2}\right)\right.$

$$
B=B_{1}=B_{2}=\frac{K^{2}\left(\Delta_{1}+\Delta_{2}\right)}{m_{1} m_{2}\left[\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+\left(\Delta_{1}+\Delta_{2}\right)\left(\Delta_{1} \omega_{2}^{2}+\Delta_{2} \omega_{1}^{2}\right)\right]} \quad B=\epsilon^{2} B^{0}
$$

The coupling factor B is a second order term

Subsystems of resonators

Assumptions

- conservative and light coupling
- subsystem $=\left\{\right.$ uncoupled resonators + same $\left.m_{i}, c_{i}\right\}$
- « rain-on-the-roof » forces =
white noise forces + uncorellated forces + PSD constant in subsystems

subsystem $i, j \quad$ mode α, β

Canonical problem

$$
\begin{cases}m_{i} \ddot{x}_{i \alpha}+c_{i} \dot{x}_{i \alpha}+k_{i \alpha} x_{i \alpha}=f_{i \alpha}+\sum_{j \neq i} \sum_{\beta} k_{i \alpha, j \beta} x_{j \beta} & E_{i}=\sum_{\alpha} E_{i \alpha} \\ E_{i \alpha}=\frac{1}{2} m_{i} \dot{x}_{i \alpha}^{2}+\frac{1}{2} k_{i \alpha} x_{i \alpha}^{2}-\sum_{j \neq i} \sum_{\beta} \frac{1}{2} k_{i \alpha, j \beta} x_{i \alpha} x_{j \beta} & \\ P_{i \alpha, j \beta}=\frac{1}{2} k_{i \alpha, j \beta}\left(x_{i \alpha} \dot{x}_{j \beta}-\dot{x}_{i \alpha} x_{j \beta}\right) & P_{i j}=\sum_{\alpha, \beta} P_{i \alpha, j \beta}\end{cases}
$$

By previous results $\left\langle P_{i j}\right\rangle=\sum_{\alpha, \beta} \epsilon^{2} B_{i \alpha, j \beta}^{0}\left(\left\langle E_{i \alpha}\right\rangle-\left\langle E_{j \beta}\right\rangle\right)+o\left(\epsilon^{2}\right)$
$\begin{array}{ll}\text { But at order } 0(\epsilon=0), \quad\left\langle E_{i \alpha}\right\rangle=\frac{S_{i}}{2 c_{i}}+o(1) & \text { Equipartition of energy } \\ \text { PSD constant } & \left\langle E_{i \alpha}\right\rangle=\frac{\left\langle E_{i}\right\rangle}{N_{i}}+o(1)\end{array}$
Coupling power proportionality

$$
\left\langle P_{i j}\right\rangle=\left(\sum_{\alpha, \beta} B_{i \alpha, j \beta}\right)\left(\frac{\left\langle E_{i}\right\rangle}{N_{i}}-\frac{\left\langle E_{j}\right\rangle}{N_{j}}\right)+o\left(\epsilon^{2}\right)
$$

Random resonators

The coupling factor $\sum_{\alpha, \beta} B_{i \alpha, j \beta}$ is a very complicated function that depends on «blocked» natural frequencies and half-power bandwidth of all resonators. In practice, its effective computation is costly ($\mathrm{N} \sim 10^{6}$) and requires the knowledge of all details of the subsystems.

This is exactly what we want to avoid in statistical energy analysis
To «forget» the exact position of eigenfrequencies, we need to approximate the discrete sum by an integral.

$$
\frac{1}{N} \sum_{\alpha} f\left(\omega_{\alpha}\right)=\int f(\omega) p(\omega) d \omega \quad \frac{1}{N_{i} N_{j}} \sum_{\alpha, \beta} f\left(\omega_{\alpha}, \omega_{\beta}\right)=\iint f\left(\omega, \omega^{\prime}\right) p_{i}(\omega) p_{j}\left(\omega^{\prime}\right) d \omega d \omega^{\prime}
$$

How to choose the pdf?

Empirical cumulative distribution function

$$
F_{\omega_{i}}(\omega)=\operatorname{Card}\left\{\alpha / \omega_{i \alpha} \leq \omega\right\}
$$

pdf

$$
p_{i}(\omega)=\frac{d}{d \omega} F_{\omega_{i}}(\omega)=\frac{n_{i}(\omega)}{N_{i}} \ll_{\text {\# of modes in } \Delta \omega}
$$

Uniform probability density function

$\sum_{\alpha, \beta} B_{i \alpha, j \beta}=\frac{K^{2}}{m_{i} m_{j}} \int_{\Delta \omega} \int_{\Delta \omega} \frac{\left(\Delta_{i}+\Delta_{j}\right) d \omega_{i} d \omega_{j}}{\left[\left(\omega_{i}+\omega_{j}\right)^{2}+\frac{1}{4}\left(\Delta_{i}+\Delta_{j}\right)^{2}\right]\left[\left(\omega_{i}-\omega_{j}\right)^{2}+\frac{1}{4}\left(\Delta_{i}+\Delta_{j}\right)^{2}\right]}$
$\sum_{\alpha, \beta} B_{i \alpha, j \beta}=\frac{\pi K^{2} N_{i} N_{j}}{2 m_{i} m_{j} \omega_{0}^{2} \Delta \omega}$

Coupling power proportionality

Reciprocity

$$
\eta_{i j} N_{i}=\eta_{j i} N_{j}
$$

Ensemble of similar systems

Meaning of the approximation process

$$
\frac{1}{N_{i} N_{j}} \sum_{\alpha, \beta}-\rightsquigarrow \int_{\Delta \omega} \int_{\Delta \omega}-d \omega d \omega^{\prime}
$$

System with a large number of modes $N_{i} \gg 1$ and $N_{j} \gg 1$
SEA applies to a unique system
Population of similar systems with random variations (Gibb's ensemble)
SEA applies to the average system

Coupled beams Lotz \& Crandall 1971

Assumptions

- non-resonant modes are neglected

Governing equation

$$
m_{i} \frac{\partial^{2} u_{i}}{\partial t^{2}}+c_{i} \frac{\partial u_{i}}{\partial t}+E_{i} I_{i} \frac{\partial^{4} u_{i}}{\partial x^{4}}=f_{\text {external force }} f_{i}(x, t)+K \frac{\partial u_{j}}{\partial x} \overbrace{\text { coupling force }}^{\prime}(x)
$$

Blocked modes $\psi_{i \alpha}(x)$

- $\quad E_{i} I_{i} \frac{d^{4}}{d x^{4}} \psi_{i \alpha}(x)=m_{i} \omega_{i \alpha}^{2} \psi_{i \alpha}(x)$

- modes are orthogonal
- they form a complete set $u_{i}(x, t)=\sum_{\alpha} U_{i \alpha}(t) \psi_{i \alpha}(x)$

Reduction to the canonical problem
Subsituting $u_{i}(x, t)=\sum U_{i \alpha}(t) \psi_{i \alpha}(x)$ into the governing equation leads to the following set of equations on modal amplitudes $U_{i \alpha}(t)$

$$
\left\{\begin{array}{l}
m_{i} \ddot{U}_{i \alpha}+c_{i} \dot{U}_{i \alpha}+m_{i} \omega_{i \alpha}^{2} U_{i \alpha}=F_{i \alpha}+\sum_{\beta} K \psi_{i \alpha}^{\prime}(0) \psi_{j \beta}^{\prime}(0) U_{j \beta} \\
E_{i \alpha}=\frac{1}{2} m_{i} \dot{U}_{i \alpha}^{2}+\frac{1}{2} m_{i} \omega_{i \alpha}^{2} U_{i \alpha}^{2}-\frac{1}{2} \sum_{\beta} K \psi_{i \alpha}^{\prime}(0) \psi_{j \beta}^{\prime}(0) U_{i \alpha} U_{j \beta} \\
P_{i \alpha, j \beta}=\frac{1}{2} K \psi_{i \alpha}^{\prime}(0) \psi_{j \beta}^{\prime}(0)\left(U_{i \alpha} \dot{U}_{j \beta}-\dot{U}_{i \alpha} U_{j \beta}\right)
\end{array}\right.
$$

This is exactly the canonical problem

Coupling power proportionality

Coupling loss factors

Wave approach

Assumptions

- diffuse field (homogeneous + isotropic)

Specific intensity: $I_{1}=c_{g_{1}} \frac{E_{i}}{2 \pi A_{i}} \quad$ Transmission efficiency : $T(\theta)=\frac{\mathcal{P}_{\text {transmitted }}}{\mathcal{P}_{\text {incident }}}$

$$
\begin{aligned}
& P_{1 \rightarrow 2}=\int_{L} \int I_{1} \cos \theta T(\theta) d \theta d L \\
& P_{1 \rightarrow 2}=\frac{E_{1}}{2 \pi A_{1}} c_{g_{1}} L \int_{-\pi / 2}^{\pi / 2} T(\theta) \cos \theta d \theta
\end{aligned}
$$

Hence

The problem reduces to the computation of the mean transmission efficiency

Identification procedure

System $=\{$ n subsystems $\}$
The subsystems are alternatively excited by a source of unit power.
E_{j}^{i} :energy in subsystem j for a unit power in subsystem i

Repeating the experiment for other source subsystems gives n^{2} equations. The coupling loss factors are obtained by solving these equations.

Remark : reciprocity of CLF has not been used.
It exists many variants of this procedure

Energy balance

For each subsystem, the energy balance reads

$$
P_{i n j, i}=P_{\text {diss }, i}+\sum_{\text {injected power }} P_{i j} P_{i j}
$$

Loss by damping $P_{\text {diss }, i}=\eta_{i} \omega E_{i}$
Loss by coupling $P_{i j}=\omega \eta_{i j} E_{i}-\omega \eta_{j i} E_{j}$
Hence

$$
P_{i}=\eta_{i} \omega E_{i}+\sum_{j \neq i}\left(\omega \eta_{i j} E_{i}-\omega \eta_{j i} E_{j}\right)
$$

In a matrix form

$$
\omega\left(\begin{array}{ccc}
\sum_{j} \eta_{1 j} & & -\eta_{j i} \\
& \ddots & \\
-\eta_{j i} & & \sum_{j} \eta_{n j}
\end{array}\right)\left(\begin{array}{c}
E_{1} \\
\vdots \\
E_{n}
\end{array}\right)=\left(\begin{array}{c}
P_{1} \\
\vdots \\
P_{n}
\end{array}\right)
$$

Injected power

$$
P=\left\langle f^{2}\right\rangle \frac{1}{\Delta \omega} \int_{\Delta \omega} \Re[Y(\omega)] d \omega
$$

A statistical estimation of the mean conductance (real part of the mobility) gives,

Entropy in statistical analysis

Clausius' postulate
Heat cannot be transferred from cold body to hot body without converting heat into work.

Heat spontaneously flows from hot body to cold body

Coupling power proportionality

R.H. Lyon

Vibrational energy flows from high modal energy to low modal energy
Analogy : Heat $\delta Q \quad \leftrightarrow$ Vibrational energy $d E$
Temperature $\mathrm{T} \longleftrightarrow$ Modal energy E/N
Clausius entropy : $d S=\frac{\delta Q}{T} \longleftrightarrow$ Vibrational entropy

Entropy balance

Production of entropy

$$
\frac{d S_{i}^{\mathrm{inj}}}{d t}=k \frac{P_{i}^{\mathrm{inj}} N_{i}}{E_{i}}
$$

$$
\frac{d S}{d t}=0
$$

Statistics at large scale

Vibrational entropy is a measure of missing information between FEM and SEA.

