

Tribology and system dynamics laboratory CNRS - Ecole centrale de Lyon, FRANCE

Contents:

- 1 Introduction 2 Modal density
- 3 Damping
- 4 Randon functions

- 5 Modal approach of statistical energy analysis
- 6 Coupling loss factors
- 7 Energy balance
- 8 Injected power
- 9 Entropy in statistical energy analysis

Reference: Foundation of statistical energy analysis in vibroacoustics, A. Le Bot, Oxford University Press, may 2015.

Introduction

When the frequency increases,

Frequency limitation of FEM

The modal density increases (!) $n = \frac{\Delta N}{\Delta \omega}$

Inefficiency of modal analysis

High sensitivity to data

Poor predictibility

Frequency limits by FEM

automobile	< 1000 Hz
aircraft	< 100 Hz
ship	< 10 Hz
Launcher, building	<1 Hz

Statistical energy analysis is a statistical theory of sound and vibration when the number of modes is large and vibration is sufficiently disorganized.

laminar flow

turbulent flow

modes <-> molecules diffuse field <-> thermal equilibrium

Modal density

Each finite structure (or bounded room) has a sequence of natural frequencies which tends to infinite.

Ex. string:
$$\omega_i = i\frac{\pi}{L}$$
 and $\psi_i(x) = \sin\left(i\pi\frac{x}{L}\right)$ for $i = 1, 2, ...$
Dimension 1
Resonance = integer number of half-wavelengths
wavenumber $\kappa_{\pi}^{\text{length}} = N$ dispersion relationship $\kappa(\omega)$
modal density $n(\omega) = \frac{dN}{d\omega} = \frac{L}{\pi}\frac{d\kappa}{d\omega}$
group speed $c_g = \frac{d\omega}{d\kappa}$

Dimension 2

Resonance = integer number of half-wavelengths in each direction

wavenumber vector $\kappa = (\kappa_x, \kappa_y)$ $\frac{\kappa_x}{\pi} a = p$ $\frac{\kappa_y}{\pi} b = q$ $\frac{\kappa_y}{\pi} b = q$ $(p, q) \in \mathbb{N}^2$ number of modes below ω : $N(\omega) = \operatorname{Card} \left\{ (p, q) \in \mathbb{N}^2, \left(\frac{p\pi}{a}\right)^2 + \left(\frac{q\pi}{b}\right)^2 \leq \kappa^2(\omega) \right\}$ $N(\omega) \text{ is approximated by the area under the ellipse} \quad 1 = \left(\frac{p\pi}{a}\right)^2 + \left(\frac{q\pi}{b}\right)^2$ $\frac{1}{2} \omega = \operatorname{cste}$

Dimension 3

Resonance = integer number of half-wavelengths in each direction

width wavenumber vector length integer height integer integer $\kappa = (\kappa_x, \kappa_y, \kappa_z) \qquad \qquad \frac{\kappa_x}{a} = p \checkmark \qquad \frac{\kappa_y}{b} = q \checkmark \qquad \frac{\kappa_z}{c} = r \checkmark (p, q, r) \in \mathbb{N}^3$ number of modes below ω : $N(\omega) = \operatorname{Card}\left\{ (p, q, r) \in \mathbb{N}^3, \left(\frac{p\pi}{a}\right)^2 + \left(\frac{q\pi}{b}\right)^2 + \left(\frac{r\pi}{c}\right)^2 \le \kappa^2(\omega) \right\}$ $N(\omega)$ is the volume enclosed by the ellipsoid surface $1 = \left(\frac{p\pi}{a}\right)^2 + \left(\frac{q\pi}{b}\right)^2 + \left(\frac{r\pi}{a}\right)^2$ ω=cste $N(\omega) = \frac{1}{8} \times \frac{4}{3} \pi \frac{a\kappa}{\pi} \frac{b\kappa}{\pi} \frac{c\kappa}{\pi} = \frac{abc\kappa^3}{6\pi^2}$ 3D modal density surface modal density $n(\omega) = \frac{dN}{d\omega} = \frac{abc}{2\pi^2}\kappa^2 \frac{d\kappa}{d\omega}$ group speed $c_g = \frac{d\omega}{d\kappa}$ phase speed $c_p = \frac{\omega}{\kappa}$ phase speed group speed

Damping

At high frequencies, the vibrational level is controlled by damping

- viscous damping coefficient c
- modal damping ratio ζ
- damping loss factor η
- half-power bandwidth Δ

Half-power bandwidth

 $\begin{array}{ccc} \mathbf{x}(t) & \mathbf{f}(t) \\ \mathbf{m} & \mathbf{\omega}_0 = \sqrt{\frac{k}{m}} & \boldsymbol{\zeta} = \frac{c}{2m\omega_0} \\ \mathbf{c} & \mathbf{k} & \boldsymbol{\eta} = 2\boldsymbol{\zeta} & \boldsymbol{\Delta} = \boldsymbol{\eta}\boldsymbol{\omega}_0 \end{array}$

half-power bandwidth Δ damping loss factor $\,\eta=\frac{\Delta}{\omega_0}\,$

This a low frequency method

Reverberation time

Tr=Time for a decrease of 60 dB of vibrational level (or SPL)

Time decrease of energy $E(t) = E_0 \exp(-\eta \omega t)$ $10 \log_{10} E(T_r) - 10 \log_{10} E_0 = -60$

Power balance

Steady state condition $P_{inj} = \eta \omega E$

Measurement of P_{inj} with an impedance head **This is a high frequency method** Measurement of E with accelerometers or vibrometer

Random functions

A random function is a map $t \mapsto x(t)$ where x(t) is a random variable

<. > probabilitic expectation

Auto-correlation – power spectral density

$$\begin{array}{c} \underset{\langle x(t)x(t+\tau)\rangle}{\text{time delay}} \\ \langle x(t)x(t+\tau)\rangle = \frac{1}{2\pi}\int_{-\infty}^{\infty}S_{xx}(\omega)\exp{(i\omega t)}d\omega \end{array} \end{array}$$

Auto-correlation

Power spectral density (PSD)

At $\tau = 0$

$$\langle x^2 \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{xx}(\omega) d\omega$$

Stationarity

A random function is stationary if $\langle x(t) \rangle$ and $\langle x(t)x(t+\tau) \rangle$ do not depend on *t*.

White noise

Uncorrelation

x(t) and y(t) are said uncorrelated if $\langle x(t)y(t+\tau)\rangle = 0$ or $S_{xy}(\omega) = 0$

Response to a linear system

PSD of output

 $S_{xx}(\omega) = |H|^2(\omega)S_{ff}(\omega) \qquad S_{\dot{x}\dot{x}}(\omega) = \omega^2|H|^2(\omega)S_{ff}(\omega) \qquad S_{f\dot{x}}(\omega) = i\omega H(\omega)S_{ff}(\omega)$

Modal approach of statistical energy analysis

The goal of statistical energy analysis is to provide an analysis of vibrating structures in terms of energy and power.

 E_i : vibrational energy in subsystem i. K_i : kinetic energy in subsystem i. V_i : elastic energy in subsystem i.

$$E_i = V_i + K_i$$

How is the vibrational energy shared between the elastic and kinetic forms?

 $P_{inj,i}$: power injected in subsystem i by external forces $P_{diss,i}$: power dissipated in subsystem i.

How to compute the injected power from spectrum of forces? Is the dissipated power related to vibrational energy?

 P_{ij} : power exchanged between subsystem i and j.

Is there a relation between P_{ij} and E_i , E_j ?

Single resonator

Governing equation

Assumptions

·linear mechanical oscillator

• stationary random force f(t)

• white noise force of spectrum S₀

i) Equality of kinetic and elastic energies

$$\langle V \rangle = \frac{1}{2} k \langle x^2 \rangle = \frac{k}{4\pi} \int_{-\infty}^{\infty} S_{xx}(\omega) d\omega = \frac{kS_0}{4\pi} \int_{-\infty}^{\infty} |H|^2(\omega) d\omega = \frac{kS_0}{8\zeta m^2 \omega_0^3}$$

$$\langle K \rangle = \frac{1}{2} m \langle \dot{x}^2 \rangle = \frac{m}{4\pi} \int_{-\infty}^{\infty} S_{\dot{x}\dot{x}}(\omega) d\omega = \frac{mS_0}{4\pi} \int_{-\infty}^{\infty} \omega^2 |H|^2(\omega) d\omega = \frac{mS_0}{8\zeta m^2 \omega_0}$$

ii) Injected power

$$\langle P_{inj} \rangle = \langle f \dot{x} \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{f\dot{x}}(\omega) d\omega = \frac{S_0}{2\pi} \int_{-\infty}^{\infty} i\omega H(\omega) d\omega = \frac{S_0}{2m} \qquad \qquad \langle P_{inj} \rangle = \frac{S_0}{2m}$$

=

iii) Mean power balance

$$\langle \frac{dE}{dt} \rangle = \langle m\dot{x}\ddot{x} \rangle + k \langle x\dot{x} \rangle = \frac{m}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\omega)d\omega + \frac{k}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\omega)d\omega = \frac{mS_0}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |H|^2(\omega)d\omega + \frac{kS_0}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |H|^2(\omega)d\omega = 0$$

$$\langle P_{diss} \rangle = c \langle \dot{x}^2 \rangle = \frac{2c}{m} \times \frac{1}{2} m \langle \dot{x}^2 \rangle = \frac{2c}{m} \langle K \rangle = \frac{c}{m} \langle E \rangle$$

$$\langle P_{diss} \rangle = \frac{c}{m} \langle E \rangle$$

$$\langle \frac{dE}{dt} \rangle + \langle P_{diss} \rangle = \langle P_{inj} \rangle \qquad \langle P_{inj} \rangle = \frac{c}{m} \langle E \rangle$$

Pair of resonators Lyon and Sharton 1968

Governing equation

Assumptions

- linear mechanical oscillators
- stationary random forces
- white noises force of spectrum
- uncorrelated forces
- conservative coupling (inertial, gyroscopic and elastic)

$$\underbrace{\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}}_{\mathbf{M}} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{pmatrix} + \underbrace{\begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix}}_{\mathbf{C}} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} + \begin{pmatrix} k_1 & -K \\ -K & k_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

Frequency response matrix $\mathbf{H}(\omega) = \left[-\omega^2 \mathbf{M} + i\omega \mathbf{C} + \mathbf{K}\right]^{-1}$

Power balance

$$\frac{d}{dt} \begin{bmatrix} \frac{1}{2}m_i \dot{x}_i^2 + \frac{1}{2}k_i x_i^2 - \frac{1}{2}Kx_1 x_2 \end{bmatrix} + \begin{array}{c} c_i \dot{x}_i^2 \\ \swarrow \end{array} + \begin{array}{c} c_i \dot{x}_i^2 \\ \swarrow \end{array} + \begin{array}{c} \frac{1}{2}K(x_i \dot{x}_j - \dot{x}_i x_j) \\ \swarrow \end{array} = \begin{array}{c} f_i \dot{x}_i \\ \swarrow \end{array}$$
kinetic energy elastic energy dissipated power exchanged power injected power

The elastic energy of the coupling has been shared between adjacent oscillators

i) Equality of kinetic and elastic energies $\langle V_i \rangle = \langle K_i \rangle$

It exists a unique way to share the coupling energy between oscillators to enforce the equality for each oscillator.

ii) Injected power

$$\langle P_{inj,i} \rangle = \frac{S_i}{2m_i}$$

The injected power does not depend on the presence of a coupling

iii) Mean power balance Since each product $\langle x_i^{(p)} x_j^{(q)} \rangle$ is a linear combination of the power spectrums S_i

$$\begin{array}{c} \langle P_{ij} \rangle = \begin{pmatrix} A_1 & A_2 \end{pmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} \\ \begin{pmatrix} \langle E_1 \rangle \\ \langle E_2 \rangle \end{pmatrix} = \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} \quad \langle P_{ij} \rangle = \begin{pmatrix} A_1 & A_2 \end{pmatrix} \begin{pmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{pmatrix}^{-1} \begin{pmatrix} \langle E_1 \rangle \\ \langle E_2 \rangle \end{pmatrix}$$

So, by expanding $\langle P_{12} \rangle = B_1 \langle E_{\rangle} - B_2 \langle E_2 \rangle$ After calculating all the integrals by the residue theorem

« blocked » natural frequency

$$\omega_i = \sqrt{k_i/m_i}$$

half-power bandwidth

$$\Delta_i = c_i/m_i$$

Set of resonators

Governing equation $\mathbf{M}\ddot{\mathbf{X}} + \mathbf{C}\dot{\mathbf{X}} + \mathbf{K}\mathbf{X} = \mathbf{F}(t)$

Frequency response matrix $\mathbf{H}(\omega) = \left[-\omega^2 \mathbf{M} + i\omega \mathbf{C} + \mathbf{K}\right]^{-1}$

i) Equality of kinetic and elastic energies ii) Injected power $\langle P_{inj,i} \rangle = \frac{S_i}{2m_i}$

iii) Mean power balance $\langle P_{12} \rangle = B(\langle E_{\rangle} - \langle E_{2} \rangle) + o(\epsilon^{2})$

$$B = B_1 = B_2 = \frac{K^2(\Delta_1 + \Delta_2)}{m_1 m_2 \left[(\omega_1^2 - \omega_2^2)^2 + (\Delta_1 + \Delta_2)(\Delta_1 \omega_2^2 + \Delta_2 \omega_1^2) \right]} \qquad B = \epsilon^2 B^0$$

 $\langle V_i \rangle = \langle K_i \rangle$

The coupling factor *B* is a second order term

Subsystems of resonators

Assumptions

- · conservative and light coupling
- subsystem = { uncoupled resonators + same m_i, c_i }
- « rain-on-the-roof » forces =

white noise forces + uncorellated forces + PSD constant in subsystems

subsystem *i*, *j* mode α , β

Canonical problem

$$\begin{cases} m_i \ddot{x}_{i\alpha} + c_i \dot{x}_{i\alpha} + k_{i\alpha} x_{i\alpha} = f_{i\alpha} + \sum_{j \neq i} \sum_{\beta} k_{i\alpha, j\beta} x_{j\beta} \\ E_{i\alpha} = \frac{1}{2} m_i \dot{x}_{i\alpha}^2 + \frac{1}{2} k_{i\alpha} x_{i\alpha}^2 - \sum_{j \neq i} \sum_{\beta} \frac{1}{2} k_{i\alpha, j\beta} x_{i\alpha} x_{j\beta} \\ P_{i\alpha, j\beta} = \frac{1}{2} k_{i\alpha, j\beta} (x_{i\alpha} \dot{x}_{j\beta} - \dot{x}_{i\alpha} x_{j\beta}) \end{cases}$$

$$E_i = \sum_{\alpha} E_{i\alpha}$$

$$P_{ij} = \sum_{\alpha,\beta} P_{i\alpha,j\beta}$$

By previous results $\langle P_{ij} \rangle = \sum_{\alpha,\beta} \epsilon^2 B_{i\alpha,j\beta}^0 (\langle E_{i\alpha} \rangle - \langle E_{j\beta} \rangle) + o(\epsilon^2)$ But at order 0 ($\epsilon = 0$), $\langle E_{i\alpha} \rangle = \frac{S_i}{2c_i} + o(1)$ $\epsilon = \frac{S_i}{2c_i} + o(1)$ $\epsilon = \frac{S_i}{2c_i} + o(1)$ $\epsilon = \frac{S_i}{2c_i} + o(1)$

Coupling power proportionality

$$\langle P_{ij} \rangle = \left(\sum_{\alpha,\beta} B_{i\alpha,j\beta} \right) \left(\frac{\langle E_i \rangle}{N_i} - \frac{\langle E_j \rangle}{N_j} \right) + o(\epsilon^2)$$

Random resonators

The coupling factor $\sum_{\alpha,\beta} B_{i\alpha,j\beta}$ is a very complicated function that depends on « blocked » natural frequencies and half-power bandwidth of all resonators. In practice, its effective computation is costly (N~10⁶) and requires the knowledge of all details of the subsystems.

This is exactly what we want to avoid in statistical energy analysis

To « forget » the exact position of eigenfrequencies, we need to approximate the discrete sum by an integral.

$$\frac{1}{N}\sum_{\alpha}f(\omega_{\alpha}) = \int f(\omega)p(\omega)d\omega \quad \frac{1}{N_iN_j}\sum_{\alpha,\beta}f(\omega_{\alpha},\omega_{\beta}) = \int \int f(\omega,\omega')p_i(\omega)p_j(\omega')d\omega d\omega'$$

How to choose the pdf?

Uniform probability density function

$$\sum_{\alpha,\beta} B_{i\alpha,j\beta} = \frac{K^2}{m_i m_j} \int_{\Delta\omega} \int_{\Delta\omega} \int_{\Delta\omega} \frac{(\Delta_i + \Delta_j) d\omega_i d\omega_j}{\left[(\omega_i + \omega_j)^2 + \frac{1}{4}(\Delta_i + \Delta_j)^2\right] \left[(\omega_i - \omega_j)^2 + \frac{1}{4}(\Delta_i + \Delta_j)^2\right]}$$

$$\sum_{\alpha,\beta} B_{i\alpha,j\beta} = \frac{\pi K^2 N_i N_j}{2m_i m_j \omega_0^2 \Delta \omega}$$
smooth term

Coupling power proportionality

$$\langle P_{ij} \rangle = \omega_0 \eta_{ij} N_i \left(\frac{\langle E_i \rangle}{N_i} - \frac{\langle E_j \rangle}{N_i} \right)$$

Reciprocity

$$\eta_{ij}N_i = \eta_{ji}N_j$$

coupling loss factor

Ensemble of similar systems

Meaning of the approximation process

$$\frac{1}{N_i N_j} \sum_{\alpha,\beta} - \leadsto \int_{\Delta \omega} \int_{\Delta \omega} -d\omega d\omega'$$

System with a large number of modes $N_i >> 1$ and $N_j >> 1$

SEA applies to a unique system

Population of similar systems with random variations (Gibb's ensemble)

SEA applies to the average system

Coupled beams Lotz & Crandall 1971

Assumptions

• non-resonant modes are neglected

Governing equation

Blocked modes $\psi_{i\alpha}(x)$

$$E_i I_i \frac{d^4}{dx^4} \psi_{i\alpha}(x) = m_i \omega_{i\alpha}^2 \psi_{i\alpha}(x)$$

- <u>6</u>
- modes are orthogonal
- they form a complete set $u_i(x,t) = \sum_{\alpha} U_{i\alpha}(t)\psi_{i\alpha}(x)$

Reduction to the canonical problem

Subsituting $u_i(x,t) = \sum U_{i\alpha}(t)\psi_{i\alpha}(x)$ into the governing equation leads to the following set of equations on modal amplitudes $U_{i\alpha}(t)$

$$m_{i}\ddot{U}_{i\alpha} + c_{i}\dot{U}_{i\alpha} + m_{i}\omega_{i\alpha}^{2}U_{i\alpha} = F_{i\alpha} + \sum_{\beta}K\psi_{i\alpha}'(0)\psi_{j\beta}'(0)U_{j\beta}$$
$$E_{i\alpha} = \frac{1}{2}m_{i}\dot{U}_{i\alpha}^{2} + \frac{1}{2}m_{i}\omega_{i\alpha}^{2}U_{i\alpha}^{2} - \frac{1}{2}\sum_{\beta}K\psi_{i\alpha}'(0)\psi_{j\beta}'(0)U_{i\alpha}U_{j\beta}$$
$$P_{i\alpha,j\beta} = \frac{1}{2}K\psi_{i\alpha}'(0)\psi_{j\beta}'(0)(U_{i\alpha}\dot{U}_{j\beta} - \dot{U}_{i\alpha}U_{j\beta})$$

This is exactly the canonical problem

Coupling power proportionality

Coupling loss factors

The problem reduces to the computation of the mean transmission efficiency

Identification procedure System ={ n subsystems}

The subsystems are alternatively excited by a source of unit power. E_i^i :energy in subsystem j for a unit power in subsystem i

Repeating the experiment for other source subsystems gives n² equations. The coupling loss factors are obtained by solving these equations.

Remark : reciprocity of CLF has not been used.

It exists many variants of this procedure

Energy balance

For each subsystem, the energy balance reads

injected power dissipation exchanged power

Loss by damping $P_{diss,i} = \eta_i \omega E_i$

Loss by coupling
$$P_{ij} = \omega \eta_{ij} E_i - \omega \eta_{ji} E_j$$

Hence

$$P_i = \eta_i \omega E_i + \sum_{j \neq i} (\omega \eta_{ij} E_i - \omega \eta_{ji} E_j)$$

In a matrix form

$$\omega \begin{pmatrix} \sum_{j} \eta_{1j} & -\eta_{ji} \\ & \ddots & \\ -\eta_{ji} & & \sum_{j} \eta_{nj} \end{pmatrix} \begin{pmatrix} E_1 \\ \vdots \\ E_n \end{pmatrix} = \begin{pmatrix} P_1 \\ \vdots \\ P_n \end{pmatrix}$$

Injected power

$$P = \langle f^2 \rangle \frac{1}{\Delta \omega} \int_{\Delta \omega} \Re \left[Y(\omega) \right] d\omega$$

A statistical estimation of the mean conductance (real part of the mobility) gives,

Entropy in statistical analysis

<u>Clausius' postulate</u> Heat cannot be transferred from cold body to hot body without converting heat into work.

Heat spontaneously flows from hot body to cold body

Analogy : Heat δQ Temperature T \Leftrightarrow Vibrational energy dEModal energy E/N Clausius entropy : $dS = \frac{\delta Q}{T} \iff$ Vibrational entropy

Vibrational entropy

of modes

Entropy balance

$$\frac{dS}{dt} = 0$$

Statistics at large scale

Vibrational entropy is a measure of missing information between FEM and SEA.