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  LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEDA)* 

 

  Assuming a forcing term of radiant frequency ω, the equation of 

  motion for a one-dimensional undamped structure is: 

 
 

 

 

 

                                                                        E: envelope operator 
 

     𝑢  is the Hilbert Transform of u,  i.e.   
 

     and  (𝑢 + 𝑗 𝑢 )  is the analytical displacement.  
 
*Carcaterra and Sestieri: Complex envelope displacement analysis: a quasi-static approach to vibrations. JSV,  

   vol. 201(2), 1997. 

  

The complex envelope displacement is defined as follows: 
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LOW FREQUENCY MAPPING OF HF VIBRATIONS (cont’d) 
 

     By applying the envelope operator to the motion equation and  

    expressing the physical displacement in terms of the complex 

    envelope one obtains: 
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CEDA equation 

𝑢 admits an inverse which is given by: 

So, once the CEDA equation is solved, one can reconstruct the  

physical displacement 



CEDA LAY-OUT IN THE WAVENUMBER DOMAIN 

   Shifted signal spectrum 

  (complex envelope) 

       Physical signal spectrum 

Analytic signal spectrum 
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 LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEDA)* 
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When computing the complex envelope displacement we can recover  

the physical displacement by the inverse transformation         
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 LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEDA) 

Example 

For the exact solution 100 points used against 16 points in CEDA 
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CEV: VECTORIZATION PROCESS 
 

Because of the difficulties to extend CEDA to multi-dimensional and vibro-

acoustic systems … 

𝑘𝑥 

𝑘𝑦 

another approach was proposed: CEV - Complex Envelope  

  Vectorization. 

CEV: VECTORIZATION PROCESS 

 

 

This slide shows schematically the vectorization procedure: each row (or column) of the 

discrete surface solution is transferred to a strip, so that, at the end, we have a new discrete 

signal that we can manipulate conveniently as a one-dimensional system 

Spectrum of the response 

for a two-dimensional  

system  



   CEV VECTORIZATION PROCEDURE 
                                                                                                         

Note: in the above vectorization procedure the spectrum of the response 

signal is not anymore concentrated around a single wavenumber 𝑘0 but 

rather spreads into the whole wavenumber domain  
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Fourier Transform Vectorized signal 



Stiffness matrix K 

and mass matrix M  

If the excitation is harmonic with frequency ω, one has         

    (- ω2 M + K) u = p      

 LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEV)*                                                                                                       
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puA 

 DMA – Università di Roma La Sapienza 

  Lab. di Vibrazione e Acustica Strutturale  

* Giannini, Carcaterra, Sestieri. High frequency vibration analysis by CEV. JASA, 121(6), 2007 

FEM 



                                                                             

In CEV a set of complex envelope signals 𝐮(𝑟)and    

is produced from u                                                    

                                                                                                           

CEV (cont’d)                                                                                                     
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(CEV equation) 

𝐩(𝑟) 



   LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEV)* 
                                                                                                         

puKM  )( 2 puA 
u and p can be viewed as sampled values of continuous signals u(s)  

and p(s) . 
 

Because of the vectorized spread in the wavenumber domain, in CEV 

two sets of complex envelope signals                (             ) are produced 

from u(s) (p(s)), each one characterized by a narrow wavenumber 

spectrum.  

 

 
This is obtained by filtering the spectrum U(k) of  u(s) by a set of narrow 

spectral windows 𝑊(𝑟)(k)  and shifted by the quantity 𝑘𝑟 towards the 

wave number origin to produce 𝑈(𝑟). 
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obtained by IFT Set of low frequency signals 

Space High Freq. Signal Fourier Transform Definition of Bands 

For each band 

Window 

Wavenumber shift 

Wavenumber shift 

The Envelop operator for high dimensional problems 
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 LOW FREQUENCY MAPPING OF HF VIBRATIONS (CEV) 
(cont’d) 

 
 
 

The rth complex signal 𝑢(𝑟) is obtained by inverse Fourier Transform 
 
 
 
 
 
                                                                                                                                                                                                          and ….                                                                                        
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Set of low wavenumber signals 

High Freq. Space Signal 

The operation is reversible 
(provided that the whole set of windowed signals are considered) 

         …… 
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NUMERICAL RESULTS (34x34) 
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 How to build 𝐀  (𝐌, 𝐊) from the physical matrix A (M, K)   

   The explicit form of the motion equation                is: 

 

   It can be turned into continuous form by using p(s) and u(s) to obtain:  
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Assume the kernel to have the form:  a (s ,σ) = a (s - σ). 

By  i) Fourier transforming the motion equation, ii) applying the 

window W(r), and iii) shifting the result toward the origin by kr: 
 

 

 

                                                                          (Inverse Fourier Transform) 
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   Reconsidering its discrete counterpart 
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                          sampling interval of the dummy varialble s 

This expression permits to recover the envelope matrix 𝐀 (𝐌, 𝐊) 

from the physical matrix A (M, K)  
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 How to build 𝐀  (𝐌, 𝐊) from the physical matrix A (M, K) 

 (cont’d)   



  CEV  EQUATION (summary) 

   From the discrete equation of a conservative dynamic problem 

 
 

 

                                                   by: 
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  load transformation: i) Fourier transform F, ii) application of  

  bandpass  windows W(r), iii) wave number shift operation toward the 

  origin 𝐒(𝑟),  iv) inverse Fourier transform F-1: 
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matrix transformation 

CEV Equation 



LIMITS  OF  CEV AND  REMARKS 

• The condition  

     a(s,σ) = a(s-σ)  

     is strictly valid for infinite systems. 

 

•    For finite systems it is not true.  

     However it can be shown that it holds in an average 

     sense,  i.e. if the response is spatially averaged.  
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 CEV  EQUATIONS FOR NON CONSERVATIVE SYSTEMS 
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For non conservative systems (A and u are complex), the steps presented  

above can be maintained provided that u, p and A are written differently,  

as follows: 
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- The new problem, providing the complex envelope, has size NxN , identical to 

   the original one – and has the same eigenvalues of the original one. 

- Each spectral window has a low wavenumber spectrum, thus a fine mesh  

   is unnecessary – and actually non convenient for the CEV application. 

 

    
  

RARA
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  A suitable expansion matrix R is introduced to solve the problem at a low 

  computational cost. By omitting the superscript (r) for the sake of simplicity: 

 
 

 

  R is rectangular and admits a pseudo-inverse R+ such that  
 

  R+R=I         while        RR+ ≠ I      

 

     

  UNDERSAMPLIG 
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; 

For example, for a 6 x 6 matrix A, and a reduction ratio    = 2, we may  

choose  


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so that, in this case it is R+ = RT / 

The operation                             implies a partition of the original matrix 

into square submatrices, replacing each submatrix with a single value 

obtained by averaging its elements  
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  The inverse relationship provides the physical solution 

                           

  RECOVERING THE PHYSICAL SOLUTION 
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Steps in CEV: summary 

• A (M and K) is determined by a standard FEM 

 

• The windowed envelop matrix is determined from 

      (       is not affected by the filtering operation) 

 

• The windowed envelope load is obtained by FT of the forcing vector, 

      windowing the wavenumber component by W(r), and shifting the spectrum by  

      The IFT provides 

 

•                is determined by 

 

•             is determined by 

 

• From the CEV equation, 𝐮(𝑟) is determined, and the physical response 

recovered  
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• Leakage effect of the filtering process, implying that CEV acts correctly 

  on the forced part of the solution but does not tackle efficiently the  

  homogeneus part   
 

A


A


LIMITS  OF  CEV AND  REMARKS 
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Looking at the spectrum of a point load (flat in the frequency domain), 

the filtered spectrum is not sharply rectangular, due to the use of a finite 

number of points, i.e. a truncated FT of the signal (leakage) 

 

Filter spectrum shifted to the 

wavenumber origin 

Response of the filtered load (it is not 

strictly confined in the filter 

bandwidth) 

• If the matrix     is not reduced, the eigenvalues of      are equal to those 

  of the physical problem A and the envelope solution matches perfectly  

  the physical solution. 

 

• When the envelope matrix is reduced, the eigenvalues of the reduced  

   problem are different (lower) from those of the physical problem: an 

   error is introduced – mistuning 

   However: the eigenvalues of the reduced problem are a subset of the 

   eigenvalues of the non reduced problem, under the assumption that the 

   CEV solution is smooth. Using a set of windows in the wavenumber  

   domain, it is possible to approximate sufficiently well the eigenvalues  

   of the original problem thus obtaining a reasonable response. 

   

This is a drawback especially for low damping. 

However the contribution of different windows 

having different phases, reduces significantly  

such spread. 
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LIMITS  OF  CEV AND  REMARKS 
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CEV can be considered successful when the modes of the  

system do not play a key role. Particularly: 

 

•  when the damping is relatively high 

•  when a direct field is preponderant with respect to the 

      reverberant field 

•  for high frequency problems with an acceptable damping 

•  when an external acoustic problem (no modes) is considered*. 
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Application 1: 2D cavity with a point source 

FE discretization:  grid 64x64 (4096 DOF) 

CEV discretization: grid 16x16 (512 DOF)  
Damping 0.01 
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Application 2: bending plate 1x1x0.002 m with a point source 

Damping 0.01 

FE grid: 64x64 (12288 DOF). CEV DOFS: 384 (Reduction rate 32) 
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Application 3: foam plate 1x1x0.05 m with a point source 

Damping 0.17 

FE discretization: grid 64x64 (4096 DOF) 

CEV discretization: grid 16x16 (512 DOF)  
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4 6

A benchmark for the 

Marie Curie ITN 



      BENCHMARK FOR A PRIN NATIONAL PROJECT 
 

       Reduction  from 32226 dofs to 786 dofs  (ratio 41) 

      Plate dimensions: 1- 600x400x3 mm, 2- 300x400x3, 3- 400x400x3.  
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Damping 0.04  

Damping 0.001  



Radiation into the field 

Formulation of the external problem 

FEM 

Velocity field 

 on the boundary 

Pressure on the Boundary 
BEM 

APPLICATION OF CEV TO BEM FORMULATION 
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APPLICATION OF CEV TO BEM  FORMULATION 
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Integral formulation of a vibro-acoustic problem, under steady conditions, by the 

free-space Green function 

Whatever the type of elements used, in matrix form one has 

This problem can be solved by following the same steps shown before, i.e.: 

- a FEM is used to determine the response v (CEV can be used but not convenient) 

  

redred TT




- a BEM is used to determine the matrix T         

                    or 

- a BEM is used to determine the matrix T 

 

- a BEM is used to compute c               𝐜                𝐜 𝑟𝑒𝑑 

more convenient 

computationally 

redTT




    



APPLICATION OF CEV TO BEM FORMULATION 
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The CEV method applied to the boundary element formulation provides 

The mistuning does not affect the BEM-CEV formulation because 

the operator T is not directly related to the structural operator: 

thus there is no error in the natural frequencies location.  

NO MISTUNING 



TEST CASES: pulsating sphere (r = 0.1m, 𝒗𝒏= 0.01 m/s) 
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External field. Reduction factor 8: from 1016 to 127 DOFS 

Pressure field on the surface 

f = 800 Hz 
External field 

Internal  field 



TEST CASES: external field generated by a loaded box 
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Point spectrum at 15 m from the box: 

Comparison between reference solution and CEV for different  

reduction factors (21 – 168) 

Note that for reduction factor 168, the CEV Dofs are only 14 

Pressure spectrum at a distance d=15m from the box 

Reduction factor 21: from 1176 to 112 DOFS 

Force spectra are flat between 

700 and 2500 Hz 



TEST CASES: external field radiated by a benchmark 
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Reduction factor 19: from 855 to 45 DOFS 

Pressure spectrum at a reference  

point of the field 

Flat spectra forces 



TEST CASES: external field radiated by a benchmark 
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TEST CASES: external field radiated by a benchmark 
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A reference model for future developments (WKB*) 

       Possible connections with  CEV, VTCR, DEA, WBM, WIA? 
 

   WKB (Eikonal) establishes a relationship between the exact equations of 

waves and the ray tracing approximation. 

    Considering the wave equation with a harmonic excitation, it is: 
 

                                                                               where  n(x) is the refraction index: 𝑐0/𝑐(𝒙) 

    By factorizing ψ into amplitude and phase    ψ(x) = A(x) 𝑒−𝑗𝑆(𝒙), 

    substituting into the wave equation and getting real and imaginary parts: 

 

 

 

   (* Wenzel, Kramers and Brillouin) 
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   Let  ε = 1/k2: 

 

 

   By expressing the solution in the form 

 

 

   and using a perturbation approach up the first order: 

 

 

 

 

          

                         

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 
 

      

WKB (cont.) 
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  At order zero, i.e. λ  →  0, i.e. k → ∞     (ray tracing)      

 

 

   Equal phase surfaces are those over which S(x) are constant: rays are 

   those lines intersecting orthogonally equal phase surfaces. The unit 

   vector along the ray is: 

 

 

 

   producing: 

 

   that can be solved iteratively. 
 

      

WKB (cont.) 
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  Turning this approach to discrete form: 

 

 

 

 

 

              with: 

 

 

              i.e.                           (L S) a   =  p 

  LS acts on the wave operator by modulating exponentially its 

  coefficients, just as CEV and others methods do. 

  

 

 

 

 

 

 

 
 

      

WKB (cont.) 
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          Comparison between WKB and CEV 
 

            WKB                                    CEV 
 

 
- It uses different orders of perturbation    - It uses several windows centered on 
  to approximate the solution                        kr to shift the HF components and 
                                                                      approximate the solution 
 
 
 
 
 
 
 - S(x) is unknown                                      - The phase modulating term is assigned 
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                WKB                                    VTCR/WBM 

 
In WKB the solution is represented by             Both VTCR and WBM use shape  

waves amplitudes modulated by phase             functions that are exact solution of  the 

functions, and different perturbation                 governing differential equations  - 

orders are used to approximate the                    modes represented by a superposition 

solution.                                                             of wave shape functions in WBM, local modes, 

                                                                           superposition of appropriate waves in VTCR. 

                                                                           

                                                                          In VTCR a two-scale approximation is  

                                                                          used in the weak formulation. Only the      

                                                                          slow scale (wave amplitude) is discretized 

                                                                          while the fast varying scale  (spatial shape 

                                                                          of the wave) is analytically described. 

 

 

 

 

Comparison between WKB and VTCR/WBM* 
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* WBM: Wave based method, VTCR: Variational theory of complex rays 



                WKB                                    DEA/WIA 

 
 In WKB the zero-th order approximation         In DEA the ray dynamics is described by  
 provides the ray tracing technique.                   a set of basis functions. When using the 
 Using  higher orders of  perturbation                lowest basis function the ray tracing 
 it is possible to refine the solution.                   approximation, and SEA, is obtained 
                                                                          
                                                                           In WIA the displacement field is obtained 
                                                                           by a superposition of travelling waves. By  
                                                                           neglecting phase dependencies, only an  
                                                                           energy beam is associated to each wave.  
                                                                           By expanding each beam by a Fourier         
                                                                           series, an energy balance equations is  
                                                                           obtained. It provides the SEA equations if  
                                                                           the series is arrested to the first term. 

 

 

 

 

Comparison between WKB and DEA/WIA* 

*DEA: Dynamic Energy analysis, WIA: Wave intensity approach 
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•  CEV does not use an energy formulation, but performs a transformation       

    leading to a new variable that has a low wavenumber content and  

    capable of accounting correctly for the boundary conditions. As such, it 

    is particularly appropriate to deal with high frequency problems. 

 

•  The envelope mass and stiffness matrices are determined directly from 

    the FE matrices, so that any commercial FE or BE code can be used. 

 

•  A reduction technique is applied to these matrices to get a new problem  

    whose  dimensions are much smaller than the original one, with a  

   “relevant” saving of time computation. 

 

•  The approach is particularly convenient when the modes do not play 

    a relevant role: e.g. external acoustic problems 
 

                                                    

CONCLUDING REMARKS (1) 
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•  CEV can be applied to both external and internal vibro-acoustic 

   problems, with errors bounded within 3 dB from the reference solution. 

 

•  Unlike the application of CEV with FEM, in the application to BEM  

   the mistuning problem is absent. Thus, CEV can be efficiently used to  

   determine the internal acoustic field. 

 

•  The reduction factor can be increased at will, without affecting  

    significantly the quality of the solution: however, increasing the  

    reduction factor it is necessary to increase the number of spectral  

    filters. 

 

• Shall we define a common goal and tasks to address predictive 

     methods, with clear tasks and goals?                                      

CONCLUDING REMARKS (2) 
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Thank you for your attention 
 

Any question? 
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Time average? 

Frequency average? 

Ensemble average?  

Direct field? 

Reverberant field? 

Wave interference? 
 



Weak form of the kernel 

For an infinite system a(s,σ) = a(s-σ) (freee space Green function) 

For finite systems it does generally hold. 

However it can hold in a weak or average form, i.e. 
 

𝑎 𝑠, σ = 𝑎 (𝑠 − σ)  

By FT a(s,σ)  

 

By FT 𝑎 (s-σ)                       

 𝑎 (𝑠, σ)
∞

−∞
 𝑒−𝑖𝑘𝑥𝑥𝑑𝑠 = 𝐴(𝑘𝑥,σ) 

 𝑎  (𝑠 − σ)
∞

−∞
 𝑒−𝑖𝑘𝑥𝑥𝑑𝑠 = 𝐴 (𝑘𝑥) 𝑒−𝑖𝑘𝑥σ 

i.e., to satisfy the convolution condition it must be               =   𝐴(𝑘𝑥,σ) 𝐴(𝑘𝑥) 𝑒−𝑖𝑘𝑥σ 

𝐴 (𝑘𝑥) = 
𝐴(𝑘𝑥,σ)

𝑒−𝑖𝑘𝑥σ   

By IFT, it is possible to determine 𝑎 (s) as:     𝑎 (s) = 𝐹−1 𝐴(𝑘𝑥,σ)

𝑒−𝑖𝑘𝑥σ       
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SPECTRAL WINDOW DECOMPOSITION  

W6 W5 W4 W3 W2 W1 

W1  

LOW FREQUENCY SOLUTION  N. 

1 

….. 

….. 

….. 

….. 

W6  

LOW FREQUENCY SOLUTION  N. 

6 

    

 FORWARD SHIFTING 

 

  MOVE THE SOLUTIONS 

  AT THE RIGTH WN-  

+ 
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   FOURIER 

TRANSFORM 

a 

δs 
 

space step 

k MAX 

 

maximum 

wavenumber 

 HIGH FREQUENCY PROBLEMS & SPECTRAL CHARACTERISTICS 
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CEDV SOLUTION:  

 DESCRIBE THE RESPONSE BY A SET OF NARROW BAND SIGNALS  

WAVENUMBER 

AXIS ORIGIN 

LOW FREQUENCY SIGNAL HIGH FREQUENCY SIGNAL 
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NUMERICAL RESULTS (34x34) 
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NUMERICAL RESULTS,  PLATE (34x34 vs 16x16)  

COMPARISON BETWEEN VECTORIZED SOLUTIONS  

PHYSICAL 
ENVELOPE 
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CEV: GOVERNING EQUATIONS  
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CEV: ENVELOPE VECTORIZATION 

fwKM


 )( 2fwKM  )( 2

xjk
ewjwww 0)~(][


 E


)(0 ijljk

ijij
eMM






)(0 ijljk

ijij eKK









Spectrum of the vectorized displacement of high dimensional problems 

 DMA – Università di Roma La Sapienza 

  Lab. di Vibrazione e Acustica Strutturale  


